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Abstract. We discuss in great detail two quantum mechanical models of planar electrons
which are very much related to the fractional quantum Hall effect. In particular, we discuss the
localization properties of the trial ground states of the models starting from considerations on
the numerical results on the energy. We conclude that wavelet theory can be conveniently used
in the description of the system. Finally we suggest applications of our results to the fractional
quantum Hall effect.

1. Introduction

In recent years great effort has been made to find a wavefunction which minimizes the
energy of a two-dimensional system of electrons subjected to a strong constant magnetic
field applied perpendicularly to the sample, independently of the electron density. This is,
in fact, the first step towards understanding the main features of the fractional quantum
Hall effect FQHE). Many trial ground states have been proposed so far, none of which has
explained all the experimental data: the most successful is the one proposed by Laughlin,
[1,2], which describes an incompressible fluid (which therefore carries current without
losing energy) whose static energy is very low.

The wavefunction proposed by Morchio, Strocchi and the present author in [3] is totally
different. The authors, following the same line of reasoning [4, 5], consider the system of
electrons as essentially a two-dimensional crystal. This crystal is built by first considering a
Gaussian (a coherent state) centred at the origin, and then by ‘moving’ this Gaussian along
the sites of a triangular lattice. The wavefunction of the finite volume system is the Slater
determinant of the single-electron wavefunctions centred in the relevant lattice sites. The
details can be found in [3] where it is also shown that, for low electron densities, the energy
of this state is lower than the one obtained by Laughlin’s state. However, the theoretical
value of the ‘critical density’ at which the crystal phase appears to be favoured with respect
to the liquid one is slightly different from the value given by experiment, see [6]. Therefore,
even if a crystal phase is expected, its wavefunction must be refined.

In this paper we discuss a pedagogical model which suggests in which way one can
modify the wavefunction in [3] to lower the energy, so as to explain the experimental
data. The idea essentially consists in modifying the single-electron wavefunction trying to
achieve a better electron localization. In fact, we expect that the most localized electron
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wavefunction will give the lowest value for the Coulomb energy if the electrons are originally
localized around different spatial points. This claim follows both from classical and quantum
considerations, see [7, 3].

The paper is organized as follows. In section 2 we introduce a physical model whose
ground level is infinitely degenerate (like the oneraHE). In this way the ground state is
not fixeda priori. We construct different trial ground states using the Haar, the Littlewood—
Paley and the harmonic oscillator bases. We also discuss their localization properties.

In section 3 we slightly modify the model previously introduced by fixing the mean
positions of the electrons around lattice sites. Then we construct the new basis and we
discuss how to compute the energies of the Coulomb interaction in these different bases for
both the models considered.

In section 4, we give and comment on the numerical results. In the appendix, we
introduce other models which can be treated with analogous techniques and, in particular,
we show that theeQHE belongs to this class of model.

2. The model

Let us consider a system a¥ electrons in a two-dimensional device. We divide the
Hamiltonian into a single-body contribution plus a two-body term:

PO 13, 1
H ;Ho(z)—i— 2; e (2.1)
We observe that no background subtraction is consider&titth. This is meaningful only if
we are restricted to a finite number of electrons, that is, if we kédp be finite, otherwise
the Coulomb energy diverges whéh — oco. Since we are not going to compute the true
energy of the system, but only a two-body contribution, we do not need at this stage to
introduce the positive background.

The form of Hy(i) is chosen here in a convenient way. In fact, we are more interested in
the analogies of the model in (2.1) with theHE than in its physical relevance. Therefore,
for reasons that will appear clear in the following, we take eHgh') to be of the form

Ho = 3(p2 4+ x?) + 3p5 + pupy- (2.2)
Therefore, each electron behaves like an harmonic oscillater ia free iny and is also
subjected to a ‘strange’ potential which is proportional to the momentum of the electron.
We also see that the.component does not appear iip(i) (which reflects the fact that the
device is two dimensional).

It is easy to verify that the following canonical transformation

0 =p+p P =—x

Q' =p, P=x-y (2.3)
preserves the commutation relations,

[0, PI=[Q, P]=i [0, P]1=[0,Q1=[P,P]=[P,Q]=0
and in this sense it isanonical see [8], and that in the new variablég takes the form

Ho = 3(Q%+ P?) (2.4)

so thatQ’ and P’ disappear from the definition df.
To discuss the ground energy of the Hamiltonian (2.1) we follow the same steps as in
[3]: first, we find the ground state of the single-electron unperturbed HamiltdijaThen,
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we build up the trial ground state of thé-electrons unperturbed Hamiltonial,; Ho(i),
as a Slater determinant of these single-electron wavefunctions. Finally, we compute the
matrix element of the Coulomb interaction in this state. As widely discussed in [3], this
procedure also seems to be justified, at least for small electron densities.

Before going on, let us show the relation between our pedagogical model argHbe
The FQHE is described by the same Hamiltonian as in (2.1) with a diffefét

HE = 3(px — y/2° + 3(py + x/2)*

which describes an electron subjected to a constant magnetic field perpendicular to the
device. A canonical transformation similar to the one in (2.3), see [3] and references
therein, transformg4{ in the sameH, (2.4). Therefore, even ity in (2.2) andH} are
different, they are both ‘projected’ into the same harmonic oscillator (2.4) by different
canonical transformations. This difference appears explicitly in the integral transformation
rule which relates the expressions for the wavefunctions in the varighle$ and(Q, Q),
see [8]. The reason why we discuss this pedagogical example and rrpHbalirectly is
that this transformation rule is very simple for oHp, while it is much more difficult for
H{, see [3]. However, a first real application of our approach in the contexgeE can
be found in [9].

From [8] we can easily find that, i (x,y) and ®(Q, Q') are respectively the
wavefunctions in the ordinary space and in the ‘canonically transformed’ space, they are
related by

1 *© *© ! ! H /
vy =5 [ do [ do'e0.0)exdilQ - x + 0x)).  @5)
To find the single-electron ground state of our modej(x, y), it is therefore sufficient
(actually equivalent) to find the ground stabg(Q, Q') of (2.4). Due to the particular form
of this Hy we see thatby(Q, Q') can be factorized and that the dependenceaos fixed:
regarding the Coulomb interaction as a perturbatiot/gfit is reasonable to put

1
®(Q,0) = 14 exp(—0%/2)¢(Q). (2.6)

Here the functiong(Q’) is totally free because the variabte’ does not appear in the
Hamiltonian (2.4) and the energy of the unperturbed system only depen@s @nly the
form of the perturbation is fixed. An analogous phenomenon, known agetheneracy of
the Landau levelstakes place fori}, for the same reason. This explains why the ground
state of theFQHE is not fixed.

We are now ready to discuss different choicesp@f)’) and their projections in the
configuration space via (2.5), comparing the resulting energies and localizations.

We start by considering the Littlewood—Paley orthonormal basis of wavelets. We refer
to [10] and [11] for all that concerns the wavelet theory used in this paper.

The mother wavelet of this set is

L(x) = (rx)"X(sin2rx) — sin(zx))

which, using the well known definitior.,,,(x) = 27/2L(27"x — n), generates an
orthonormal set inL?(R). In particular, we will be interested in the subdgét, (x)} =
{L.0(x)}. The functions of this set obviously satisfy the orthonormality condition

(Lnu Ln> = Smn
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and, when used in (2.5) as different choices for the functioQ’), they give the following
set of wavefunctions in the configuration space:

LP 2n/2
\Illgz )(xy)’)= \/2713/4

Here xp, (y) is the characteristic function of the sBt, which is equal to one iy € D,
and zero otherwise. We have defined

2 b4 b4 2
Dx:[x_%,x_%}u[x+2’71,x+2’11]. (2.8)

ey, (). (2.7)

Due to the canonicity of the transformation (2.3) the functions of théBgf) (x, y) : m ¢
Z} are obviously mutually orthonormal. Moreover, we see from (2.7) that they are very
well localized in bothx andy.

Another possible choice for the functiai(Q’) is any function belonging to the Haar
wavelet set. The mother wavelet of this set is the function

1 ifo<x<1/2
Hx)y=1-1 ifl/l2<x<1
0 otherwise

and the relevant set is defined in the usual Wgl;, (x)} = {H,o(x)} = {27"/2H(27"x) :
m € Z}. This set is again orthonormal but the localization of each wavefunction is rather
poor. From (2.5) we get

2—m/2i e—x2/2
N273/4 (y — x)

which again decreases exponentiallyibut goes like 1y in y. We do not expect therefore
that the se{w ™ (x, y) : m € Z} can play a relevant role in the energy computation.
We end this section by discussing another class of trial ground states of the Hamiltonian
Hy. This time we will take non-wavelet functions. In particular, we considergo’)
the first three eigenstates of the Hamiltonidp = %(Q/2 + P’?), which are orthonormal,
and compute the projections in the configuration space of the complete fudetionQ’)

using the transformation rule (2.5). We easily find the following results:

WM (x, y) = (@00 12 (2.9)

1
WO (x, y) = N expl—(y% + 2x% — 2xy)/2]

.12
W (x, y) = .\/; (v — x) expl=(3* + 2x% — 2xy) /2]
1
———(1-2(y — x)®) exp[- (% + 2x? — 2xy)/2].
ez y pl=(y /2]
All these wavefunctions, obviously mutually orthogonal, have a good localization in both
x andy. In particular the best localized is, of coursi{"® (x, y).

The reason for considering these wavefunctions in this paper is that the choice of the
ground state of the harmonic oscillator, which here gi\{q?SO)(x, y), is the one which
allows the construction of the trial ground state used in the description ofghg see
[3]. It is therefore useful, in our opinion, to have a comparison between these different
approaches.

w9 (x, y) =
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3. Energy computation and wavelet bases on a lattice

We start this section by discussing the way in which the energy of the system can be
computed. As a matter of fact, we are not going to compute the true energy of the system,
since in any case this is not physically very interesting, but only a certain matrix element
which is enough to get some relevant information on the ground state of the model, since
it contains the main contribution to the energy. First of all, weNix= 2 in (2.1) since, in

any case, the total energy is essentially a sum of two-body contributions.

In any book of many-body theory it is shown that the computation of the energy of an
N-electron system, in the Hartree—Fock approximation, is a (summation of the) difference
of two contributions, called, respectively, the direct and exchange terms. We should add to
this difference also the ground energy of the kinetic Hamiltor@ﬁ1 Ho(i). However, in
our model, as well as in theQHE, this contribution is constant, in the sense that it does not
depend on the particular choice of the functipin (2.6). Therefore it will be neglected in
all future considerations.

For our two-electron system the wavefunction is the following Slater determinant:

1
V2!

where ¥, (r;), i, j = 1,2, are the single-electron wavefunctions obtained in the previous
section, see (2.7), (2.9) and (2.10). The Coulomb enéigyf the system is therefore

W (7, *W(ry,
Ec= /dznfdz?“z (r1, 72)*" Y (71, 2) = Vg — Ve

V(ry, ra) = (W1(ry)Wa(rz) — Wa(ry)Wi(rz)) (3.1

|r1 — 72
where
v 2|y 2
Vo= / . fd2r2| 1(ry) 2| (r2)|
|71 — 72
and

Ve = / oy / iy W1(r1)* Wo(r2)* Wi(r2) Wa(ry)
|r1 — 72
are, respectively, the direct and exchange terms.

It is well known that, at least for localized wavefunctions, the exchange contribution is
much smaller than the direct one. This feature is explicitly discussed, for instance, in [3],
where these contributions are explicitly computed for el Therefore in this paper we
will not computeVey, Since it is not expected to change the numerical results significantly.
We will focus our attention only on the computation of the direct téfgmwhich, with a
little abuse of language, will still often be called the ‘energy’ of the system.

Before computing the expressions &f for the Littlewood—Paley and harmonic
oscillator bases we use these same bases as starting points to introduce a ‘natural’ lattice
into our model. The reason for doing this is again that a lattice is a natural structure for the
FQHE at least for small electron densities, see [3]. Actually, since we are dealing with only
two electrons, we will think of our lattice as two spatially not coincident points. We again
refer to [3], and references therein, for the details concerning the construction of the lattice
associated tdy.

Using the results of the previous section it is easy to prove that the unitary operators

T, =€e2" T, =€’ (3.2)

both commute withHy since they do not depend o@ and P. Moreover, they also
commute with each other &b = 27 N,VN € Z. From the definition (2.3), one can
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also observe that, for any functiofi(x,y) € L?(R), T1f(x,y) = f(x,y + a) and
Tof(x,y) = explilx — y)b] f(x,y). Therefore,T, is simply a multiplication for a phase
while T acts like a shift operator. This is enough for our present aim: we can take the two
different sites of our lattice along theaxis, with a ‘lattice’ distance: = 2.

In particular, defining

2m/2
o7 y) = v y) = e L ) (33)
from the Littlewood—Paley wavelets (2.7), and
1
of'(x,y) = WS (x,y) = = expl-((y + @)% + 24 — 2x(y + a))/2)] (3.4)

J

for the most localized function of the harmonic oscillator states, (2.10), we conclude that
both ®LP)(x, y) and @E,HO) (x, y) are eigenstates dfl belonging to the ground level. This
simply follows from the commutation ruler{, Hy] = 0.

It is also easy to verify that¥ (P, @LP) = 0, ¥m > 1.

The situation is a bit different for the oscillator wavefunctions; the scalar product gives
(w9 o9 = e*. This implies that the Slater determinant is normalized within an

error of €27 = 0(1079). Therefore this extra contribution can safely be neglected here,
and we will work with \I/éHO) and @E,Ho) as if they were mutually orthogonal.

We continue this section by manipulating for two different models. In the first one,
which we call the ‘non-lattice model’, the electrons are both localized around the origin but
they are described by different wavefunctions (this is necessary in order not to annihilate the
Slater determinant (3.1)); and in the second, the ‘lattice model’, the electrons are described
by the same wavefunction localized around different points in space. Of course, this is the
model which is more similar to theQHE as already discussed in [3], and in this perspective
it has a particular interest.

We will omit the computation of the energy with the Haar bgsi™ (x, y)} since it is
not expected to be relevant for understandingrtge. This is because the wavefunctions
WM (x, y) are the most delocalized functions within the ones we have introduced in the
previous section, so that the Coulomb energy is expected to be larger than that obtained by
the other bases.

3.1. Non-lattice model

We start with manipulating the expression Wf for the basis in (2.7). From now on we
will omit the index ‘d’ since we will be concerned only with the direct contribution to the
energy. Moreover, to make explicit the dependence on the quantum numberand on
the basis, we put

GLP) (1) 210 LP) () |2
v = / oy / d2r2| ), (r2) ] (3.5)
|r1 — 72

wherem # n because of the Pauli principle. The integratioryincan be easily performed.
After some manipulation and change of variables we can also perform the integratipn in
and we obtain

o om+n [ ] 2 x+2m/2"
v = 4jTB\Efm(zlxe = / dr log [$n (x. 1)] (3.6)

+m/2
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where we have defined the following function

(t —70/2" + /X2 4 (1 — 1/2")2)(t + 27/2" + /x2 + (t + 27/2")?)
(t 4+ 70/2" + /X2 + (t + 71/27)2)(t — 27/2" + \/x2 + (1 — 270/2™)?)
G 7(3/2" +1/2") + /x2 4 (t — w(3/27 + 1/2m))2)
(t —m(3/2" — 1/2m) + /x2 4 (t — w(3/2" — 1/2m))2)
G 7(3/2" —2/2") + \/x2 + (t — w(3/2" — 2/2m))2)
(t — w(3/2" +2/2") + \/x2 + (t — w(3/2" + 2/2"))2)
It is possible to see that the above integral is certainly defined for d@ifferent from
m £ 1. The integration can be easily performed numerically and the results are discussed
in section 4.

To compute the energy for the harmonic oscillator wavefunctions (2.10) it is better to
use the following equality:
1 1 &’k .

= — [ —— exp[-ik - — .

1| 27 ) K| Pl (r1—m2)]
In this way the integrations in; andr; in Vg are reduced to Gaussian integrals and therefore
can be easily performed. Calling,J the ‘energies’ related to the wavefunctions in (2.10),
we find:

¢Wln('x7 t) =

yor_ L[k RN 62 22 s 2kk)2) (3.7)
o = P |k;| 5 P X y xRy .
02 _ 1 /de 2 k§ 2 2

Yo = 27 | e\ 27 g ) ek + 2 4 2k, /2] GO
12 1 dek kf 2 k>2’ 2 2
V= o | (15 J(2- 5 ) et + 2+ 26k 21, (3.9)

3.2. Lattice model

In this subsection we use the wavefunctions (3.3) and (3.4) obtained using the shift operator
T;. We start by considering the Littlewood—Paley basis.

As we have already said this time the energy is computed using the same wavefunction
centred in different lattice sites. Therefore it depends only on a quantum number,

We call this energy

lII(LP) r 2 CD(LP) r 2
AR :/d2r1/d2r2| w (TP, (1) . (3.10)
71 — 72|
The computation of this matrix element follows the same steps as the calculus of the

analogous contribution in (3.5), and one obtains a similar expression:

) 22m \/? 00 & 2/ X+2m 421 /2" g 311
v =__ /= e ¢t log [¢,, (x, t )
P = 23\ 2 [ N /X . 9 [ (x, )] (3.11)

o ry = F2T/20 X2 (4 2020000 = /2" + P+ (= 4/2))
(X (t +7/2" + \/x2+ (t +7/2")2)(t — 51/2" + /x2 + (t — 5/2")?)
Gt 7 e el U 7/2m)2)2
(t — 27/2" + /x2 + (t — 2/2")2)2

where
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It is possible to prove that the integral surely existsrdior 1, which is a constraint satisfied
in our conditions since we are interested in studying the behaviour of the wavefunctions
and of the energy for large values af. The reason for this interest is that for large
the wavefunctions are more localized even in the variablas one can see from (2.7) and
(2.8).

We see that the result is very similar to that #f", as expected. However, we will
show in section 4 that the numerical outputs are very different.

We end this section by simplifying the expression of the matrix element of the Coulomb
energy within the ground state of the harmonic oscillator and its translation. Using the
integral formula for the Coulomb potential, we get

wHO 2| pHO 2
VSOE/d2r1/d2r2| 0 ()9l 0 (r2)|
|ry — 72l

1 d2k . 2 2
=5 i exp[—2riky — ky — ki /2 — kuky]. (3.12)
The reason why onl}llé“o) (r) is considered here is essentially that this is the most localized
function among all the harmonic oscillator wavefunctions.

4. Numerical results and comments

In this section we will discuss the numerical results for both the models proposed previously
and we comment on these results, paying particular attention to the localization properties
of the wavefunctions.

We start by considering the non-lattice model. We report in table 1 the resultgFor
for various values ofm, n). The energies of the harmonic oscillator are easily computed:

vol=091873  v32=039019  Vi2=011041 (4.1)

For the Littlewood—Paley basis in the context of the lattice model the situation is summed
up in table 2, while the energy of the harmonic oscillator is, in this case,

Vi = 0.16515 (4.2)

We can now comment on these results. The first obvious consideration is that, while
for the first model the energy increases as muci andn both increase, for the lattice the
situation is just the opposite: the energy decreases for increasiriget us try to explain
this different behaviour. From the definitions (2.7), (2.8) and (3.3) we see that when
increases the supports jnof the functions decrease. Therefore batf” (r) and ®LP (r)
improve their localization for increasing. Since the electrons are localized at a distance of
27, we return to a situation similar to the one of theHE It is well known that the lower
bound for the ground energy is obtained if the electrons are punctually localized on the
lattice sites, that is, in the classical limit. This is because in this way the distance between
the electron is maximized, and therefore the Coulomb interaction obtains its minimum value.
These considerations explain very well the results in table 2. We see, in fact, thatiwhen
increases the energy decreases fro27083 to the asymptotic valuel®0 66. This value
is already reached forn = 9 and stays essentially unchanged even for largerhis value
could also be predicted in an heuristic way. From the definitionv¢f”(r) we deduce
that, form very large, this function behaves likewas” (r) whose square modulus is

WP ()2 = j; e s (x — y). (4.3)
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Table 1. Values of the matrix elements in (3.6) for different valueqiaf n).

V¥ = 045784 V& = 043955 V& = 043520
VL% ® — 043412 VL% ? — 043385 VL%E” =043378
V5? = 043377 V5™ = 043376 m > 10
vL% Y = 077328 V39 =0.75524 V39 =0.75093
V3" = 0.74986 v3® = 0.74959 V39 = 0.74953
v<2 19 _ 074951 vg,i"” =0.7495Q m > 11
(3 5) (3,6) 3,7
VpY = 114544 V2% = 112849 V37 = 112445
V3® = 112345 V39 = 112320 v310 _ 112314
Ve = 112313 vE™ = 112312 m > 15
V4D = 151843 V49 = 151449 V49 = 151352
Vv p1® = 151327 Ve =151321 VE™ =151319 m > 15
ve® =191054 V59 =1.906 62 V519 = 1.90565
Vet = 1.90541 V3™ =1.90533 m > 15
v&® = 231870 V&9 = 230226 V819 = 220835
V&1 = 229738 V8™ = 229705 m > 15
V(59 = 271004 V(519 = 269358 v 5 = 268966
V(™ = 268838 m > 15
V810 = 310119 V@1 = 308475 V81 = 307956
V@™ = 307954 m > 20
Ve = 349229 V512 = 347584 Ve —347192
Ve =347071 VE™ =347063 m > 20
V3212 — 388337 V3219 — 386691 V3019 — 386202
V&™) — 386171 m > 20
V32 581737 V™ —~ 581705 m > 25

Table 2. Values of the matrix elements in (3.11) for different valuesnof

v =027083 V3 =017462 Vv =0.16376
v® ) (6)
VP =016141 V@ =0.16085 Vg =016071

v =016067 V) =0.16066 m > 7

An analogous formula holds fob=" (r), @57 ()2 = * e**s(x — 27 — y). We can
compute the energ¥, in this limit and we get

/dz /dz V5" (ro) P 9% ()

|71 — 72|

dee™ 16066
Zf / X2 4 2 x + 272 '
We observe that this result exactly coincides with the one obtained on makingrease.
We can conclude that the wavefunctions are really more and more localized since, in fact,
their square modulus converges to an exponential functionrwultiplied by §(x — y).
We furthermore observe that the energy of the harmonic oscillaqﬁg,z 0.165 15,

is slightly larger than almost all thUL(E,’). This difference could be interpreted again as a
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better localization of the function®(-P (r) with respect tO\IJ((,HO)(r). This is the reason

m
why we have only computed the energy for this wavefunction and not, sawifb?‘) (r)
or \IJQHO) (r) whose localization is a bit worse. These numerical results strongly suggest the
use of wavelet instead of oscillator functions for computing the energy even Qe in
an attempt to better explain the phase transition between the Wigner and Laughlin phases,
as discussed in the introduction.

Analogous conclusions can be obtained by considering the results in table 1. We have
left these results to the end since they are less directly connected with the picture of the
FQHE, since no lattice is present in this model.

We first add extra information to table 1: all the results turn out to be symmetric under
the exchange: < n, as they must.

This time the two electrons are both localized around the origin. We expect the most
localized wavefunctions to have the maximum overlap between them and, therefore, the
energy will be at a maximum. In a classical picture it would be as if we put two point-like
charges on the same point. Of course this system is not stable and we expect very high
energy for this configuration. This is exactly what happens. If we try to compute the
energyV/p" for m andn very large, we expect the result to be the same as that obtained
by computing

Vs — /dzrl /dzrz|‘I’<g|5P)(T1)|2|‘I’éI5P)(T2)|2 _ 1 PdveR
ol re— 7o 2J7 Jose a2
which diverges, as expected.
Moreover, we also see from table 1 that for eachfixed, whenn increases,V/s"

converges toward an asymptotic value. These values could be predicted with great precision
by considering the following quantities:

WP () 21 P (o 2
Vﬁg’m)z/d2r1/d2r2| ()W " (12)]
|11 — 72

m—1 o0
g / dx & /2 log [®,, (x)] (4.4)
b4 2 J_ s

where we have defined

(4 2m/2" 4 /x2+ (x + 27/2")2) (x — /2" + Jx2 + (x —7/27)?)
(x4 7/27 4+ /X2 + (x + 7/2")2)(x — 27/2" + /x2 + (x — 21/2")2)

D, (x)

The numerical results are reported in table 3. We see that these results are extremely good,
in the sense that they coincide with the asymptotic valueg/pf, for anym fixed.

Table 3. Values of the matrix elements in (4.4) for different valuesmof

VE™ =043376 V5™ =074950 V3™ =112312

v =151319  v&™ =190533 V& =229705

VE™ =268838 V&> =307954 V2 =347063

VR —386171 V5> =581704 V32 =7.77238
25, 30, 50,

Ve —972772 v =1168307 V3™ =1950437

V(300 — 3905772
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We observe also that, for amy fixed, the energy decreases wheimcreases. This can
be understood using the usual picture since, modifying only one wavefunction, the overlap
between the two decreases.

Finally we observe again that the wavelet wavefunctions appear to be better localized
than the oscillator ones. This is deduced, this time, since the best localized functions
correspond to the maximum in energy. In fact, we hayg = 0.91873 V%2 = 0.390 19
and V32 = 0.11041. We see that the maximum of these values corresponds to the
most localized wavefunction and, however, is much less than the results one obtains using
wavelets.

We conclude the analysis of these results again with the conviction that wavelets can
have a strong utility in the problem of finding the ground state ofrthiee.
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Appendix. Other possible models

In this appendix we want briefly to discuss the main features of other physical models which
could be treated with analogous techniques. We only discuss the situation in two spatial
dimensions.

The essential ingredient in defining the model is the single-electron Hamilt@fjan
(2.1). This operator must satisfy certain constraints. In fact it must be such that a canonical
transformation, generalizing the one in (2.3), which transforms the oridigah x, y, p,
and p, into a Hamiltonian depending only on a couple of conjugate variables exists. The
most general linear transformation is the following:

X = Z(aijxj +bijpj)

j
pi= Z(Cijxj +dijpj)
J

wherex; and p; are the original canonically conjugate variables &ndnd p; are the new
ones. In [8] this kind of transformation is discussed and, in particular, it is shown how the
wavefunction is transformed under this change of variables. In this paper, we have applied
the results in [8] only to the Hamiltonian in (2.2). Similar changes of variables can also be
applied to other Hamiltonians, such as the following ones:

Hy=3(p? +x% + 3y? +xy
Hy = 5(p? + P§ + X%+ Y2+ 2xy + 2yps + (pex + xpy))
H3z=3(p: —y/2%+ 3(py +x/2)%.

In particular, the last one is the Hamiltonian of theHE All these Hamiltonians can
be transformed into the Hamiltonian of a harmonic oscillator with a suitable canonical
transformation. Of course the link between the wavefunctions in configuration space and
in the variableg Q, Q') is different depending on the coefficienis, b;;, ¢;; andd;; and it
is often not so easy as in formula (2.5).

The analysis of theQHE will be discussed in a future paper.
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