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I-90128 Palermo, Italy

Received 7 July 1995

Abstract. We discuss in great detail two quantum mechanical models of planar electrons
which are very much related to the fractional quantum Hall effect. In particular, we discuss the
localization properties of the trial ground states of the models starting from considerations on
the numerical results on the energy. We conclude that wavelet theory can be conveniently used
in the description of the system. Finally we suggest applications of our results to the fractional
quantum Hall effect.

1. Introduction

In recent years great effort has been made to find a wavefunction which minimizes the
energy of a two-dimensional system of electrons subjected to a strong constant magnetic
field applied perpendicularly to the sample, independently of the electron density. This is,
in fact, the first step towards understanding the main features of the fractional quantum
Hall effect (FQHE). Many trial ground states have been proposed so far, none of which has
explained all the experimental data: the most successful is the one proposed by Laughlin,
[1, 2], which describes an incompressible fluid (which therefore carries current without
losing energy) whose static energy is very low.

The wavefunction proposed by Morchio, Strocchi and the present author in [3] is totally
different. The authors, following the same line of reasoning [4, 5], consider the system of
electrons as essentially a two-dimensional crystal. This crystal is built by first considering a
Gaussian (a coherent state) centred at the origin, and then by ‘moving’ this Gaussian along
the sites of a triangular lattice. The wavefunction of the finite volume system is the Slater
determinant of the single-electron wavefunctions centred in the relevant lattice sites. The
details can be found in [3] where it is also shown that, for low electron densities, the energy
of this state is lower than the one obtained by Laughlin’s state. However, the theoretical
value of the ‘critical density’ at which the crystal phase appears to be favoured with respect
to the liquid one is slightly different from the value given by experiment, see [6]. Therefore,
even if a crystal phase is expected, its wavefunction must be refined.

In this paper we discuss a pedagogical model which suggests in which way one can
modify the wavefunction in [3] to lower the energy, so as to explain the experimental
data. The idea essentially consists in modifying the single-electron wavefunction trying to
achieve a better electron localization. In fact, we expect that the most localized electron
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wavefunction will give the lowest value for the Coulomb energy if the electrons are originally
localized around different spatial points. This claim follows both from classical and quantum
considerations, see [7, 3].

The paper is organized as follows. In section 2 we introduce a physical model whose
ground level is infinitely degenerate (like the one ofFQHE). In this way the ground state is
not fixeda priori. We construct different trial ground states using the Haar, the Littlewood–
Paley and the harmonic oscillator bases. We also discuss their localization properties.

In section 3 we slightly modify the model previously introduced by fixing the mean
positions of the electrons around lattice sites. Then we construct the new basis and we
discuss how to compute the energies of the Coulomb interaction in these different bases for
both the models considered.

In section 4, we give and comment on the numerical results. In the appendix, we
introduce other models which can be treated with analogous techniques and, in particular,
we show that theFQHE belongs to this class of model.

2. The model

Let us consider a system ofN electrons in a two-dimensional device. We divide the
Hamiltonian into a single-body contribution plus a two-body term:

H(N) =
N∑

i=1

H0(i) + 1

2

N∑
i 6=j

1

|ri − rj | . (2.1)

We observe that no background subtraction is considered inH(N). This is meaningful only if
we are restricted to a finite number of electrons, that is, if we keepN to be finite, otherwise
the Coulomb energy diverges whenN → ∞. Since we are not going to compute the true
energy of the system, but only a two-body contribution, we do not need at this stage to
introduce the positive background.

The form ofH0(i) is chosen here in a convenient way. In fact, we are more interested in
the analogies of the model in (2.1) with theFQHE than in its physical relevance. Therefore,
for reasons that will appear clear in the following, we take eachH0(i) to be of the form

H0 = 1
2(p2

x + x2) + 1
2p2

y + pxpy. (2.2)

Therefore, each electron behaves like an harmonic oscillator inx, is free iny and is also
subjected to a ‘strange’ potential which is proportional to the momentum of the electron.
We also see that thez-component does not appear inH0(i) (which reflects the fact that the
device is two dimensional).

It is easy to verify that the following canonical transformation

Q ≡ px + py P = −x

Q′ ≡ py P ′ = x − y (2.3)

preserves the commutation relations,

[Q, P ] = [Q′, P ′] = i [Q, P ′] = [Q, Q′] = [P, P ′] = [P, Q′] = 0

and in this sense it iscanonical, see [8], and that in the new variablesH0 takes the form

H0 = 1
2(Q2 + P 2) (2.4)

so thatQ′ andP ′ disappear from the definition ofH0.
To discuss the ground energy of the Hamiltonian (2.1) we follow the same steps as in

[3]: first, we find the ground state of the single-electron unperturbed HamiltonianH0. Then,
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we build up the trial ground state of theN -electrons unperturbed Hamiltonian,
∑

i H0(i),
as a Slater determinant of these single-electron wavefunctions. Finally, we compute the
matrix element of the Coulomb interaction in this state. As widely discussed in [3], this
procedure also seems to be justified, at least for small electron densities.

Before going on, let us show the relation between our pedagogical model and theFQHE.
The FQHE is described by the same Hamiltonian as in (2.1) with a differentH0,

H F
0 = 1

2(px − y/2)2 + 1
2(py + x/2)2

which describes an electron subjected to a constant magnetic field perpendicular to the
device. A canonical transformation similar to the one in (2.3), see [3] and references
therein, transformsH F

0 in the sameH0 (2.4). Therefore, even ifH0 in (2.2) andH F
0 are

different, they are both ‘projected’ into the same harmonic oscillator (2.4) by different
canonical transformations. This difference appears explicitly in the integral transformation
rule which relates the expressions for the wavefunctions in the variables(x, y) and(Q, Q′),
see [8]. The reason why we discuss this pedagogical example and not theFQHE directly is
that this transformation rule is very simple for ourH0, while it is much more difficult for
H F

0 , see [3]. However, a first real application of our approach in the context ofFQHE can
be found in [9].

From [8] we can easily find that, if9(x, y) and 8(Q, Q′) are respectively the
wavefunctions in the ordinary space and in the ‘canonically transformed’ space, they are
related by

9(x, y) = 1

2π

∫ ∞

−∞
dQ

∫ ∞

−∞
dQ′ 8(Q, Q′) exp{i[Q′(y − x) + Qx]}. (2.5)

To find the single-electron ground state of our model,90(x, y), it is therefore sufficient
(actually equivalent) to find the ground state80(Q, Q′) of (2.4). Due to the particular form
of this H0 we see that80(Q, Q′) can be factorized and that the dependence onQ is fixed:
regarding the Coulomb interaction as a perturbation ofH0, it is reasonable to put

8(Q, Q′) = 1

π1/4
exp(−Q2/2)φ(Q′). (2.6)

Here the functionφ(Q′) is totally free because the variableQ′ does not appear in the
Hamiltonian (2.4) and the energy of the unperturbed system only depends onQ. Only the
form of the perturbation is fixed. An analogous phenomenon, known as thedegeneracy of
the Landau levels, takes place forH F

0 , for the same reason. This explains why the ground
state of theFQHE is not fixed.

We are now ready to discuss different choices ofφ(Q′) and their projections in the
configuration space via (2.5), comparing the resulting energies and localizations.

We start by considering the Littlewood–Paley orthonormal basis of wavelets. We refer
to [10] and [11] for all that concerns the wavelet theory used in this paper.

The mother wavelet of this set is

L(x) = (πx)−1(sin(2πx) − sin(πx))

which, using the well known definitionLmn(x) ≡ 2−m/2L(2−mx − n), generates an
orthonormal set inL2(R). In particular, we will be interested in the subset{Lm(x)} ≡
{Lm0(x)}. The functions of this set obviously satisfy the orthonormality condition

〈Lm, Ln〉 = δmn
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and, when used in (2.5) as different choices for the functionφ(Q′), they give the following
set of wavefunctions in the configuration space:

9(LP)
m (x, y) = 2m/2

√
2π3/4

e−x2/2χDx
(y). (2.7)

Here χDx
(y) is the characteristic function of the setDx , which is equal to one ify ∈ Dx

and zero otherwise. We have defined

Dx =
[
x − 2π

2m
, x − π

2m

]
∪

[
x + π

2m
, x + 2π

2m

]
. (2.8)

Due to the canonicity of the transformation (2.3) the functions of the set{9(LP)
m (x, y) : m ∈

Z} are obviously mutually orthonormal. Moreover, we see from (2.7) that they are very
well localized in bothx andy.

Another possible choice for the functionφ(Q′) is any function belonging to the Haar
wavelet set. The mother wavelet of this set is the function

H(x) =


1 if 0 6 x < 1/2

−1 if 1/2 6 x < 1

0 otherwise

and the relevant set is defined in the usual way:{Hm(x)} ≡ {Hm0(x)} = {2−m/2H(2−mx) :
m ∈ Z}. This set is again orthonormal but the localization of each wavefunction is rather
poor. From (2.5) we get

9(H)
m (x, y) = 2−m/2i√

2π3/4

e−x2/2

(y − x)
(ei2m−1(y−x) − 1)2 (2.9)

which again decreases exponentially inx but goes like 1/y in y. We do not expect therefore
that the set{9(H)

m (x, y) : m ∈ Z} can play a relevant role in the energy computation.
We end this section by discussing another class of trial ground states of the Hamiltonian

H0. This time we will take non-wavelet functions. In particular, we consider forφ(Q′)
the first three eigenstates of the HamiltonianH0 = 1

2(Q′2 + P ′2), which are orthonormal,
and compute the projections in the configuration space of the complete function8(Q, Q′)
using the transformation rule (2.5). We easily find the following results:

9
(HO)

0 (x, y) = 1√
π

exp[−(y2 + 2x2 − 2xy)/2]

9
(HO)

1 (x, y) = i

√
2

π
(y − x) exp[−(y2 + 2x2 − 2xy)/2]

9
(HO)

2 (x, y) = 1√
2π

(1 − 2(y − x)2) exp[−(y2 + 2x2 − 2xy)/2].

All these wavefunctions, obviously mutually orthogonal, have a good localization in both
x andy. In particular the best localized is, of course,9

(HO)

0 (x, y).
The reason for considering these wavefunctions in this paper is that the choice of the

ground state of the harmonic oscillator, which here gives9
(HO)

0 (x, y), is the one which
allows the construction of the trial ground state used in the description of theFQHE, see
[3]. It is therefore useful, in our opinion, to have a comparison between these different
approaches.



Applications of wavelets to quantum mechanics 569

3. Energy computation and wavelet bases on a lattice

We start this section by discussing the way in which the energy of the system can be
computed. As a matter of fact, we are not going to compute the true energy of the system,
since in any case this is not physically very interesting, but only a certain matrix element
which is enough to get some relevant information on the ground state of the model, since
it contains the main contribution to the energy. First of all, we fixN = 2 in (2.1) since, in
any case, the total energy is essentially a sum of two-body contributions.

In any book of many-body theory it is shown that the computation of the energy of an
N -electron system, in the Hartree–Fock approximation, is a (summation of the) difference
of two contributions, called, respectively, the direct and exchange terms. We should add to
this difference also the ground energy of the kinetic Hamiltonian

∑N
i=1 H0(i). However, in

our model, as well as in theFQHE, this contribution is constant, in the sense that it does not
depend on the particular choice of the functionφ in (2.6). Therefore it will be neglected in
all future considerations.

For our two-electron system the wavefunction is the following Slater determinant:

9(r1, r2) = 1√
2!

(91(r1)92(r2) − 92(r1)91(r2)) (3.1)

where9i(rj ), i, j = 1, 2, are the single-electron wavefunctions obtained in the previous
section, see (2.7), (2.9) and (2.10). The Coulomb energyEC of the system is therefore

EC ≡
∫

d2r1

∫
d2r2

9(r1, r2)
∗9(r1, r2)

|r1 − r2| = Vd − Vex

where

Vd =
∫

d2r1

∫
d2r2

|91(r1)|2|92(r2)|2
|r1 − r2|

and

Vex =
∫

d2r1

∫
d2r2

91(r1)
∗92(r2)

∗91(r2)92(r1)

|r1 − r2|
are, respectively, the direct and exchange terms.

It is well known that, at least for localized wavefunctions, the exchange contribution is
much smaller than the direct one. This feature is explicitly discussed, for instance, in [3],
where these contributions are explicitly computed for theFQHE. Therefore in this paper we
will not computeVex, since it is not expected to change the numerical results significantly.
We will focus our attention only on the computation of the direct termVd, which, with a
little abuse of language, will still often be called the ‘energy’ of the system.

Before computing the expressions ofVd for the Littlewood–Paley and harmonic
oscillator bases we use these same bases as starting points to introduce a ‘natural’ lattice
into our model. The reason for doing this is again that a lattice is a natural structure for the
FQHE at least for small electron densities, see [3]. Actually, since we are dealing with only
two electrons, we will think of our lattice as two spatially not coincident points. We again
refer to [3], and references therein, for the details concerning the construction of the lattice
associated toH0.

Using the results of the previous section it is easy to prove that the unitary operators

T1 = eiQ′a T2 = eiP ′b (3.2)

both commute withH0 since they do not depend onQ and P . Moreover, they also
commute with each other ifab = 2πN, ∀N ∈ Z. From the definition (2.3), one can
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also observe that, for any functionf (x, y) ∈ L2(R), T1f (x, y) = f (x, y + a) and
T2f (x, y) = exp[i(x − y)b]f (x, y). Therefore,T2 is simply a multiplication for a phase
while T1 acts like a shift operator. This is enough for our present aim: we can take the two
different sites of our lattice along they-axis, with a ‘lattice’ distancea = 2π .

In particular, defining

8(LP)
m (x, y) ≡ T19

(LP)
m (x, y) = 2m/2

√
2π3/4

e−x2/2χDx−a
(y) (3.3)

from the Littlewood–Paley wavelets (2.7), and

8
(HO)

0 (x, y) ≡ T19
(HO)

0 (x, y) = 1√
π

exp[−((y + a)2 + 2x2 − 2x(y + a))/2] (3.4)

for the most localized function of the harmonic oscillator states, (2.10), we conclude that
both 8(LP)

m (x, y) and8
(HO)

0 (x, y) are eigenstates ofH0 belonging to the ground level. This
simply follows from the commutation rule [T1, H0] = 0.

It is also easy to verify that〈9(LP)
m , 8(LP)

m 〉 = 0, ∀m > 1.
The situation is a bit different for the oscillator wavefunctions; the scalar product gives

〈9(HO)

0 , 8
(HO)

0 〉 = e−π2
. This implies that the Slater determinant is normalized within an

error of e−2π2 = O(10−9). Therefore this extra contribution can safely be neglected here,
and we will work with9

(HO)

0 and8
(HO)

0 as if they were mutually orthogonal.
We continue this section by manipulatingVd for two different models. In the first one,

which we call the ‘non-lattice model’, the electrons are both localized around the origin but
they are described by different wavefunctions (this is necessary in order not to annihilate the
Slater determinant (3.1)); and in the second, the ‘lattice model’, the electrons are described
by the same wavefunction localized around different points in space. Of course, this is the
model which is more similar to theFQHE as already discussed in [3], and in this perspective
it has a particular interest.

We will omit the computation of the energy with the Haar basis{9(H)
m (x, y)} since it is

not expected to be relevant for understanding theFQHE. This is because the wavefunctions
9(H)

m (x, y) are the most delocalized functions within the ones we have introduced in the
previous section, so that the Coulomb energy is expected to be larger than that obtained by
the other bases.

3.1. Non-lattice model

We start with manipulating the expression ofVd for the basis in (2.7). From now on we
will omit the index ‘d’ since we will be concerned only with the direct contribution to the
energy. Moreover, to make explicit the dependence on the quantum numbersm, n and on
the basis, we put

V
m,n

LP =
∫

d2r1

∫
d2r2

|9(LP)
m (r1)|2|9(LP)

n (r2)|2
|r1 − r2| (3.5)

wherem 6= n because of the Pauli principle. The integration iny1 can be easily performed.
After some manipulation and change of variables we can also perform the integration inx1

and we obtain

V
m,n

LP = 2m+n

4π3

√
π

2

∫ ∞

−∞
dx e−x2/2

∫ x+2π/2n

x+π/2n

dt log [φmn(x, t)] (3.6)
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where we have defined the following function

φmn(x, t) ≡ (t − π/2m +
√

x2 + (t − π/2m)2)(t + 2π/2m +
√

x2 + (t + 2π/2m)2)

(t + π/2m +
√

x2 + (t + π/2m)2)(t − 2π/2m +
√

x2 + (t − 2π/2m)2)

× (t − π(3/2n + 1/2m) +
√

x2 + (t − π(3/2n + 1/2m))2)

(t − π(3/2n − 1/2m) +
√

x2 + (t − π(3/2n − 1/2m))2)

× (t − π(3/2n − 2/2m) +
√

x2 + (t − π(3/2n − 2/2m))2)

(t − π(3/2n + 2/2m) +
√

x2 + (t − π(3/2n + 2/2m))2)
.

It is possible to see that the above integral is certainly defined for alln different from
m ± 1. The integration can be easily performed numerically and the results are discussed
in section 4.

To compute the energy for the harmonic oscillator wavefunctions (2.10) it is better to
use the following equality:

1

|r1 − r2| = 1

2π

∫
d2k

|k| exp[−ik · (r1 − r2)].

In this way the integrations inr1 andr2 in Vd are reduced to Gaussian integrals and therefore
can be easily performed. CallingV i,j

HO the ‘energies’ related to the wavefunctions in (2.10),
we find:

V
0,1

HO = 1

2π

∫
d2k

|k|
(

1 − k2
y

2

)
exp[−(k2

x + 2k2
y + 2kxky)/2] (3.7)

V
0,2

HO = 1

4π

∫
d2k

|k| k2
y

(
2 − k2

y

4

)
exp[−(k2

x + 2k2
y + 2kxky)/2] (3.8)

V
1,2

HO = 1

4π

∫
d2k

|k|
(

1 − k2
y

2

)
k2
y

(
2 − k2

y

4

)
exp[−(k2

x + 2k2
y + 2kxky)/2]. (3.9)

3.2. Lattice model

In this subsection we use the wavefunctions (3.3) and (3.4) obtained using the shift operator
T1. We start by considering the Littlewood–Paley basis.

As we have already said this time the energy is computed using the same wavefunction
centred in different lattice sites. Therefore it depends only on a quantum number,m.

We call this energy

V
(m)

LP =
∫

d2r1

∫
d2r2

|9(LP)
m (r1)|2|8(LP)

m (r2)|2
|r1 − r2| . (3.10)

The computation of this matrix element follows the same steps as the calculus of the
analogous contribution in (3.5), and one obtains a similar expression:

V
(m)

LP = 22m

4π3

√
π

2

∫ ∞

−∞
dx e−x2/2

∫ x+2π+2π/2m

x+2π+π/2m

dt log [φm(x, t)] (3.11)

where

φm(x, t) ≡ (t + 2π/2m +
√

x2 + (t + 2π/2m)2)(t − 4π/2m +
√

x2 + (t − 4π/2m)2)

(t + π/2m +
√

x2 + (t + π/2m)2)(t − 5π/2m +
√

x2 + (t − 5π/2m)2)

× (t − π/2m +
√

x2 + (t − π/2m)2)2

(t − 2π/2m +
√

x2 + (t − 2π/2m)2)2
.
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It is possible to prove that the integral surely exists form > 1, which is a constraint satisfied
in our conditions since we are interested in studying the behaviour of the wavefunctions
and of the energy for large values ofm. The reason for this interest is that for largem

the wavefunctions are more localized even in the variabley, as one can see from (2.7) and
(2.8).

We see that the result is very similar to that forV
m,n

LP , as expected. However, we will
show in section 4 that the numerical outputs are very different.

We end this section by simplifying the expression of the matrix element of the Coulomb
energy within the ground state of the harmonic oscillator and its translation. Using the
integral formula for the Coulomb potential, we get

V 0
HO ≡

∫
d2r1

∫
d2r2

|9(HO)

0 (r1)|2|8(HO)

0 (r2)|2
|r1 − r2|

= 1

2π

∫
d2k

|k| exp[−2π iky − k2
y − k2

x/2 − kxky ]. (3.12)

The reason why only9(HO)

0 (r) is considered here is essentially that this is the most localized
function among all the harmonic oscillator wavefunctions.

4. Numerical results and comments

In this section we will discuss the numerical results for both the models proposed previously
and we comment on these results, paying particular attention to the localization properties
of the wavefunctions.

We start by considering the non-lattice model. We report in table 1 the results forV
m,n

LP
for various values of(m, n). The energies of the harmonic oscillator are easily computed:

V
0,1

HO = 0.918 73 V
0,2

HO = 0.390 19 V
1,2

HO = 0.110 41. (4.1)

For the Littlewood–Paley basis in the context of the lattice model the situation is summed
up in table 2, while the energy of the harmonic oscillator is, in this case,

V 0
HO = 0.165 15. (4.2)

We can now comment on these results. The first obvious consideration is that, while
for the first model the energy increases as much asm andn both increase, for the lattice the
situation is just the opposite: the energy decreases for increasingm. Let us try to explain
this different behaviour. From the definitions (2.7), (2.8) and (3.3) we see that whenm

increases the supports iny of the functions decrease. Therefore both9(LP)
m (r) and8(LP)

m (r)

improve their localization for increasingm. Since the electrons are localized at a distance of
2π , we return to a situation similar to the one of theFQHE. It is well known that the lower
bound for the ground energy is obtained if the electrons are punctually localized on the
lattice sites, that is, in the classical limit. This is because in this way the distance between
the electron is maximized, and therefore the Coulomb interaction obtains its minimum value.
These considerations explain very well the results in table 2. We see, in fact, that whenm

increases the energy decreases from 0.270 83 to the asymptotic value 0.160 66. This value
is already reached form = 9 and stays essentially unchanged even for largerm. This value
could also be predicted in an heuristic way. From the definition of9(LP)

m (r) we deduce
that, form very large, this function behaves like a9(LP)

∞ (r) whose square modulus is

|9(LP)
∞ (r)|2 = 1√

π
e−x2

δ(x − y). (4.3)
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Table 1. Values of the matrix elements in (3.6) for different values of(m, n).

V
(1,3)
LP = 0.457 84 V

(1,4)
LP = 0.439 55 V

(1,5)
LP = 0.435 20

V
(1,6)
LP = 0.434 12 V

(1,7)
LP = 0.433 85 V

(1,8)
LP = 0.433 78

V
(1,9)
LP = 0.433 77 V

(1,m)
LP = 0.433 76, m > 10

V
(2,4)
LP = 0.773 28 V

(2,5)
LP = 0.755 24 V

(2,6)
LP = 0.750 93

V
(2,7)
LP = 0.749 86 V

(2,8)
LP = 0.749 59 V

(2,9)
LP = 0.749 53

V
(2,10)
LP = 0.749 51 V

(2,m)
LP = 0.749 50, m > 11

V
(3,5)
LP = 1.145 44 V

(3,6)
LP = 1.128 49 V

(3,7)
LP = 1.124 45

V
(3,8)
LP = 1.123 45 V

(3,9)
LP = 1.123 20 V

(3,10)
LP = 1.123 14

V
(3,11)
LP = 1.123 13 V

(3,m)
LP = 1.123 12, m > 15

V
(4,7)
LP = 1.518 43 V

(4,8)
LP = 1.514 49 V

(4,9)
LP = 1.513 52

V
(4,10)
LP = 1.513 27 V

(4,11)
LP = 1.513 21 V

(4,m)
LP = 1.513 19, m > 15

V
(5,8)
LP = 1.910 54 V

(5,9)
LP = 1.906 62 V

(5,10)
LP = 1.905 65

V
(5,11)
LP = 1.905 41 V

(5,m)
LP = 1.905 33, m > 15

V
(6,8)
LP = 2.318 70 V

(6,9)
LP = 2.302 26 V

(6,10)
LP = 2.298 35

V
(6,11)
LP = 2.297 38 V

(6,m)
LP = 2.297 05, m > 15

V
(7,9)
LP = 2.710 04 V

(7,10)
LP = 2.693 58 V

(7,11)
LP = 2.689 66

V
(7,m)
LP = 2.688 38, m > 15

V
(8,10)
LP = 3.101 19 V

(8,11)
LP = 3.084 75 V

(8,15)
LP = 3.079 56

V
(8,m)
LP = 3.079 54, m > 20

V
(9,11)
LP = 3.492 29 V

(9,12)
LP = 3.475 84 V

(9,13)
LP = 3.471 92

V
(9,15)
LP = 3.470 71 V

(9,m)
LP = 3.470 63, m > 20

V
(10,12)
LP = 3.883 37 V

(10,13)
LP = 3.866 91 V

(10,15)
LP = 3.862 02

V
(10,m)
LP = 3.861 71, m > 20

V
(15,20)
LP = 5.817 37 V

(15,m)
LP = 5.817 05, m > 25

Table 2. Values of the matrix elements in (3.11) for different values ofm.

V
(1)
LP = 0.270 83 V

(2)
LP = 0.174 62 V

(3)
LP = 0.163 76

V
(4)
LP = 0.161 41 V

(5)
LP = 0.160 85 V

(6)
LP = 0.160 71

V
(7)
LP = 0.160 67 V

(m)
LP = 0.160 66, m > 7

An analogous formula holds for8(LP)
∞ (r), |8(LP)

∞ (r)|2 = 1√
π

e−x2
δ(x − 2π − y). We can

compute the energyE∞ in this limit and we get

E∞ ≡
∫

d2r1

∫
d2r2

|9(LP)
∞ (r1)|2|8(LP)

∞ (r2)|2
|r1 − r2|

= 1

2
√

π

∫ ∞

−∞

dx e−x2/2

√
x2 + 2πx + 2π2

= 0.160 66.

We observe that this result exactly coincides with the one obtained on makingm increase.
We can conclude that the wavefunctions are really more and more localized since, in fact,
their square modulus converges to an exponential function inx multiplied by δ(x − y).

We furthermore observe that the energy of the harmonic oscillator,V 0
HO = 0.165 15,

is slightly larger than almost all theV (m)
LP . This difference could be interpreted again as a
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better localization of the functions9(LP)
m (r) with respect to9(HO)

0 (r). This is the reason
why we have only computed the energy for this wavefunction and not, say, for9

(HO)

1 (r)

or 9
(HO)

2 (r) whose localization is a bit worse. These numerical results strongly suggest the
use of wavelet instead of oscillator functions for computing the energy even in theFQHE, in
an attempt to better explain the phase transition between the Wigner and Laughlin phases,
as discussed in the introduction.

Analogous conclusions can be obtained by considering the results in table 1. We have
left these results to the end since they are less directly connected with the picture of the
FQHE, since no lattice is present in this model.

We first add extra information to table 1: all the results turn out to be symmetric under
the exchangem ↔ n, as they must.

This time the two electrons are both localized around the origin. We expect the most
localized wavefunctions to have the maximum overlap between them and, therefore, the
energy will be at a maximum. In a classical picture it would be as if we put two point-like
charges on the same point. Of course this system is not stable and we expect very high
energy for this configuration. This is exactly what happens. If we try to compute the
energyV

m,n
LP for m andn very large, we expect the result to be the same as that obtained

by computing

V ∞
LP ≡

∫
d2r1

∫
d2r2

|9(LP)
∞ (r1)|2|9(LP)

∞ (r2)|2
|r1 − r2| = 1

2
√

π

∫ ∞

−∞

dx e−x2/2

√
x2

which diverges, as expected.
Moreover, we also see from table 1 that for eachm fixed, whenn increases,V m,n

LP
converges toward an asymptotic value. These values could be predicted with great precision
by considering the following quantities:

V
(m,∞)

LP ≡
∫

d2r1

∫
d2r2

|9(LP)
m (r1)|2|9(LP)

∞ (r2)|2
|r1 − r2|

= 2m−1

π2

√
π

2

∫ ∞

−∞
dx e−x2/2 log [8m(x)] (4.4)

where we have defined

8m(x) = (x + 2π/2m +
√

x2 + (x + 2π/2m)2)(x − π/2m +
√

x2 + (x − π/2m)2)

(x + π/2m +
√

x2 + (x + π/2m)2)(x − 2π/2m +
√

x2 + (x − 2π/2m)2)
.

The numerical results are reported in table 3. We see that these results are extremely good,
in the sense that they coincide with the asymptotic values ofV

m,n
LP , for anym fixed.

Table 3. Values of the matrix elements in (4.4) for different values ofm.

V
(1,∞)
LP = 0.433 76 V

(2,∞)
LP = 0.749 50 V

(3,∞)
LP = 1.123 12

V
(4,∞)
LP = 1.513 19 V

(5,∞)
LP = 1.905 33 V

(6,∞)
LP = 2.297 05

V
(7,∞)
LP = 2.688 38 V

(8,∞)
LP = 3.079 54 V

(9,∞)
LP = 3.470 63

V
(10,∞)
LP = 3.861 71 V

(15,∞)
LP = 5.817 04 V

(20,∞)
LP = 7.772 38

V
(25,∞)
LP = 9.727 72 V

(30,∞)
LP = 11.683 07 V

(50,∞)
LP = 19.504 37

V
(100,∞)
LP = 39.057 72
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We observe also that, for anym fixed, the energy decreases whenn increases. This can
be understood using the usual picture since, modifying only one wavefunction, the overlap
between the two decreases.

Finally we observe again that the wavelet wavefunctions appear to be better localized
than the oscillator ones. This is deduced, this time, since the best localized functions
correspond to the maximum in energy. In fact, we haveV

0,1
HO = 0.918 73, V 0,2

HO = 0.390 19
and V

1,2
HO = 0.110 41. We see that the maximum of these values corresponds to the

most localized wavefunction and, however, is much less than the results one obtains using
wavelets.

We conclude the analysis of these results again with the conviction that wavelets can
have a strong utility in the problem of finding the ground state of theFQHE.
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Appendix. Other possible models

In this appendix we want briefly to discuss the main features of other physical models which
could be treated with analogous techniques. We only discuss the situation in two spatial
dimensions.

The essential ingredient in defining the model is the single-electron HamiltonianH0 in
(2.1). This operator must satisfy certain constraints. In fact it must be such that a canonical
transformation, generalizing the one in (2.3), which transforms the originalH0 in x, y, px

andpy into a Hamiltonian depending only on a couple of conjugate variables exists. The
most general linear transformation is the following:

x̃i =
∑

j

(aij xj + bijpj )

p̃i =
∑

j

(cij xj + dijpj )

wherexj andpj are the original canonically conjugate variables andx̃i and p̃i are the new
ones. In [8] this kind of transformation is discussed and, in particular, it is shown how the
wavefunction is transformed under this change of variables. In this paper, we have applied
the results in [8] only to the Hamiltonian in (2.2). Similar changes of variables can also be
applied to other Hamiltonians, such as the following ones:

H1 = 1
2(p2

x + x2) + 1
2y2 + xy

H2 = 1
2(p2

x + p2
y + x2 + y2 + 2xy + 2ypx + (pxx + xpx))

H3 = 1
2(px − y/2)2 + 1

2(py + x/2)2.

In particular, the last one is the Hamiltonian of theFQHE. All these Hamiltonians can
be transformed into the Hamiltonian of a harmonic oscillator with a suitable canonical
transformation. Of course the link between the wavefunctions in configuration space and
in the variables(Q, Q′) is different depending on the coefficientsaij , bij , cij anddij and it
is often not so easy as in formula (2.5).

The analysis of theFQHE will be discussed in a future paper.
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